

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

Subject Code:

22225

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No	Q.N.		Scheme
1.		Attempt any FIVE of the following:	10
	(a)	Draw the symbol of inductor and capacitor. State the	2M
		unit of inductor and capacitor.	
	Ans.	Symbol of Inductor:	Each
			symbol ½
		OR COM	M
		Symbol of Capacitor:	Each
		Symbol of Capacitor.	Unit ½ M
		\downarrow \downarrow OR \downarrow OR \neq OR \neq	
		Unit of Inductance : Henry OR H	
		Unit of capacitance : farad OR F	
			1

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Sub	ject: BAS	IC ELECTRONICS Subject C	ode:	22225
	(b) Ans	 State the need of filters. Define filter. Need: In dc power supplies, the output of a rectifier contains dc component as well as ac component. The presence of the ac component is undesirable and must be removed so that pure dc can be obtained. Thus filters circuits are required. Filters: Filters are electronic circuits (consisting of inductors and capacitors) which remove or minimize unwanted ac component of the rectifier output and allows only the dc component to reach the load. 	Nee Dej	2M vd 1M finitio n 1M
	(c) Ans	Define α and β of transistor. α (Alpha) : This is the Common Base dc current gain. It defined as the ratio of collector current (Ic) to emitter current (IE). $\alpha = \frac{I_C}{I_E}$ β (Beta): This is the Common Emitter dc current gain. It is defined as the ratio of collector current (Ic) to the base current (IB). $\beta = \frac{I_C}{I_B}$	E defi	2M Fach Inition IM
	(d) Ans	Define amplification factor and trans-conductance of JFET. Amplification factor: Amplification factor (μ) of a JFET is the ratio of change in drain voltage to gate voltage keeping constant drain current. This indicates how much more control the gate voltage has over drain current compared to the drain voltage. $\mu = \frac{\Delta V_{DS}}{\Delta V_{GS}}$ keeping I _D constant.	E defi	2M Fach Inition IM

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

Subject Code: 22

 Low cost due to large-scale production. High reliability due to the absence of a solder joint. Increased speed. Easy replacement instead of repairing as it is economical. Higher yield, because of the batch fabrication. Disadvantages of Integrated circuits: IC resistors have a limited range. Generally inductors (L) cannot be formed using IC. ICs are delicate and cannot withstand rough handling Limited amount of power handling. Lack of flexibility. Higher value capacitors cannot be fabricated. (f) Define transducer and name two passive transducers. Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current. 		Transconductance:	
drain to source voltage: $g_{m} = \frac{\Delta I_D}{\Delta V_{GS}}$ keeping V_{DS} constant.2M(e)State the two advantages and disadvantages of integrated circuits.2MAnsAdvantages of Integrated circuits: $advantages of Integrated circuits:$ • Small in size due to the reduced device dimension. $Each$ • Low weight due to very small size. $advantage are and lower threshold power requirement.• Low cost due to large-scale production.Each• High reliability due to the absence of a solder joint.advantage are and disadvantage are and disadvantage.• Easy replacement instead of repairing as it is economical.• Higher yield, because of the batch fabrication.Disadvantages of Integrated circuits:• IC resistors have a limited range.• Generally inductors (L) cannot be formed using IC.• ICs are delicate and cannot withstand rough handling• Limited amount of power handling.• Lack of flexibility.• Higher value capacitors cannot be fabricated.Definition another form of energy.A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current.Examples of Passive transducers:Each$			
$g_m = \frac{\Delta I_D}{\Delta V_{GS}}$ keeping V_{DS} constant. 2M (e) State the two advantages and disadvantages of integrated circuits. 2M Ans Advantages of Integrated circuits: 9 • Small in size due to the reduced device dimension. • Low weight due to very small size. • Low power requirement due to lower dimension and lower threshold power requirement. • Low cost due to large-scale production. • High reliability due to the absence of a solder joint. • Increased speed. • Easy replacement instead of repairing as it is economical. • Higher yield, because of the batch fabrication. age - ½M • Higher yield, because of the batch fabrication. Disadvantages of Integrated circuits: • IC resistors have a limited range. • Generally inductors (L) cannot be formed using IC. • ICs are delicate and cannot withstand rough handling • Limited amount of power handling. • Lack of flexibility. • Higher value capacitors cannot be fabricated. 2M (f) Define transducer and name two passive transducers. Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current. IM Definition IM IM			
(e) State the two advantages and disadvantages of integrated circuits. Ans Advantages of Integrated circuits: • Small in size due to the reduced device dimension. Each advantage Low weight due to very small size. • Low weight due to very small size. advantage • Low weight due to very small size. advantage • Low cost due to large-scale production. e and disadvantage • High reliability due to the absence of a solder joint. Increased speed. • Easy replacement instead of repairing as it is economical. Higher yield, because of the batch fabrication. Disadvantages of Integrated circuits: IC resistors have a limited range. • Generally inductors (L) cannot be formed using IC. ICs are delicate and cannot withstand rough handling • Limited amount of power handling. Limited amount of power handling. • Limited amount of power handling. ZM Ans Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current. Examples of Passive transducers: Each		drain to source voltage.	
(e) State the two advantages and disadvantages of integrated circuits. Ans Advantages of Integrated circuits: • Small in size due to the reduced device dimension. Each advantage Low weight due to very small size. • Low weight due to very small size. advantage • Low weight due to very small size. advantage • Low cost due to large-scale production. e and disadvantage • High reliability due to the absence of a solder joint. Increased speed. • Easy replacement instead of repairing as it is economical. Higher yield, because of the batch fabrication. Disadvantages of Integrated circuits: IC resistors have a limited range. • Generally inductors (L) cannot be formed using IC. ICs are delicate and cannot withstand rough handling • Limited amount of power handling. Limited amount of power handling. • Limited amount of power handling. ZM Ans Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current. Examples of Passive transducers: Each			
(e) State the two advantages and disadvantages of integrated circuits. Ans Advantages of Integrated circuits: • Small in size due to the reduced device dimension. Each advantage Low weight due to very small size. • Low weight due to very small size. advantage • Low weight due to very small size. advantage • Low cost due to large-scale production. e and disadvantage • High reliability due to the absence of a solder joint. Increased speed. • Easy replacement instead of repairing as it is economical. Higher yield, because of the batch fabrication. Disadvantages of Integrated circuits: IC resistors have a limited range. • Generally inductors (L) cannot be formed using IC. ICs are delicate and cannot withstand rough handling • Limited amount of power handling. Limited amount of power handling. • Limited amount of power handling. ZM Ans Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current. Examples of Passive transducers: Each		$g_{m} = \frac{\Delta D}{\Delta D}$ keeping V_{DS} constant.	
Ansintegrated circuits. Advantages of Integrated circuits: • Small in size due to the reduced device dimension. • Low weight due to very small size. • Low power requirement due to lower dimension and lower threshold power requirement. • Low cost due to large-scale production. • High reliability due to the absence of a solder joint. • Increased speed. • Easy replacement instead of repairing as it is economical. • Higher yield, because of the batch fabrication.Each advantage e and disadvant age - ½MDisadvantages of Integrated circuits: • IC resistors have a limited range. • Generally inductors (L) cannot be formed using IC. • ICs are delicate and cannot withstand rough handling • Limited amount of power handling. • Lack of flexibility. • Higher value capacitors cannot be fabricated.2M(f) Define transducer and name two passive transducers. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current.Definitit n IM		ΔV_{GS}	
Ansintegrated circuits. Advantages of Integrated circuits: • Small in size due to the reduced device dimension. • Low weight due to very small size. • Low power requirement due to lower dimension and lower threshold power requirement. • Low cost due to large-scale production. • High reliability due to the absence of a solder joint. • Increased speed. • Easy replacement instead of repairing as it is economical. • Higher yield, because of the batch fabrication.Each advantage e and disadvant age - ½MDisadvantages of Integrated circuits: • IC resistors have a limited range. • Generally inductors (L) cannot be formed using IC. • ICs are delicate and cannot withstand rough handling • Limited amount of power handling. • Lack of flexibility. • Higher value capacitors cannot be fabricated.2M(f) Define transducer and name two passive transducers. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current.Definitit n IM		State the two advantages and disadvantages of	214
AnsAdvantages of Integrated circuits: Small in size due to the reduced device dimension.Low weight due to very small size.Low power requirement due to lower dimension and lower threshold power requirement.Low cost due to large-scale production.High reliability due to the absence of a solder joint.Increased speed.Easy replacement instead of repairing as it is economical.Higher yield, because of the batch fabrication. Easy replacement instead of repairing as it is economical.Disadvantages of Integrated circuits: IC resistors have a limited range.Generally inductors (L) cannot be formed using IC.ICs are delicate and cannot withstand rough handlingLimited amount of power handling.Lack of flexibility.Higher value capacitors cannot be fabricated. 2M(f)Define transducer and name two passive transducers. Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current.Examples of Passive transducers:Each	(e)	8 8	2111
 Small in size due to the reduced device dimension. Low weight due to very small size. Low power requirement due to lower dimension and lower threshold power requirement. Low cost due to large-scale production. High reliability due to the absence of a solder joint. Increased speed. Easy replacement instead of repairing as it is economical. Higher yield, because of the batch fabrication. Disadvantages of Integrated circuits: IC resistors have a limited range. Generally inductors (L) cannot be formed using IC. ICs are delicate and cannot withstand rough handling Limited amount of power handling. Lack of flexibility. Higher value capacitors cannot be fabricated. (f) Define transducer and name two passive transducers. Transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current. 	Ans		
 Low weight due to very small size. Low power requirement due to lower dimension and lower threshold power requirement. Low cost due to large-scale production. High reliability due to the absence of a solder joint. Increased speed. Easy replacement instead of repairing as it is economical. Higher yield, because of the batch fabrication. Disadvantages of Integrated circuits: IC resistors have a limited range. Generally inductors (L) cannot be formed using IC. ICs are delicate and cannot withstand rough handling Limited amount of power handling. Lack of flexibility. Higher value capacitors cannot be fabricated. (f) Define transducer and name two passive transducers. Ans Transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current. Examples of Passive transducers: Each 	1 1115		Each
 Low power requirement due to lower dimension and lower threshold power requirement. Low cost due to large-scale production. High reliability due to the absence of a solder joint. Increased speed. Easy replacement instead of repairing as it is economical. Higher yield, because of the batch fabrication. Disadvantages of integrated circuits: IC resistors have a limited range. Generally inductors (L) cannot be formed using IC. ICs are delicate and cannot withstand rough handling Limited amount of power handling. Lack of flexibility. Higher value capacitors cannot be fabricated. (f) Define transducer and name two passive transducers. Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current. Examples of Passive transducers: Each 			
 lower threshold power requirement. Low cost due to large-scale production. High reliability due to the absence of a solder joint. Increased speed. Easy replacement instead of repairing as it is economical. Higher yield, because of the batch fabrication. Disadvantages of Integrated circuits: IC resistors have a limited range. Generally inductors (L) cannot be formed using IC. ICs are delicate and cannot withstand rough handling Limited amount of power handling. Lack of flexibility. Higher value capacitors cannot be fabricated. (f) Define transducer and name two passive transducers. Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current. Examples of Passive transducers: Each 			Ŭ
 Low cost due to large-scale production. High reliability due to the absence of a solder joint. Increased speed. Easy replacement instead of repairing as it is economical. Higher yield, because of the batch fabrication. Disadvantages of Integrated circuits: IC resistors have a limited range. Generally inductors (L) cannot be formed using IC. ICs are delicate and cannot withstand rough handling Limited amount of power handling. Lack of flexibility. Higher value capacitors cannot be fabricated. (f) Define transducer and name two passive transducers. Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current. Examples of Passive transducers:			disadvant
 High reliability due to the absence of a solder joint. Increased speed. Easy replacement instead of repairing as it is economical. Higher yield, because of the batch fabrication. Disadvantages of Integrated circuits: IC resistors have a limited range. Generally inductors (L) cannot be formed using IC. ICs are delicate and cannot withstand rough handling Limited amount of power handling. Lack of flexibility. Higher value capacitors cannot be fabricated. (f) Define transducer and name two passive transducers. Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current. Examples of Passive transducers: Each			age - ½M
 Easy replacement instead of repairing as it is economical. Higher yield, because of the batch fabrication. Disadvantages of Integrated circuits: IC resistors have a limited range. Generally inductors (L) cannot be formed using IC. ICs are delicate and cannot withstand rough handling Limited amount of power handling. Lack of flexibility. Higher value capacitors cannot be fabricated. (f) Define transducer and name two passive transducers. Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current. Examples of Passive transducers: Each 			-
economical.• Higher yield, because of the batch fabrication.Disadvantages of Integrated circuits:• IC resistors have a limited range.• Generally inductors (L) cannot be formed using IC.• ICs are delicate and cannot withstand rough handling• Limited amount of power handling.• Lack of flexibility.• Higher value capacitors cannot be fabricated.(f)Define transducer and name two passive transducers.Transducer is a device that converts one form of energy into another form of energy.A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current.Examples of Passive transducers:Examples of Passive transducers:		• Increased speed.	
 Higher yield, because of the batch fabrication. Disadvantages of Integrated circuits: IC resistors have a limited range. Generally inductors (L) cannot be formed using IC. ICs are delicate and cannot withstand rough handling Limited amount of power handling. Lack of flexibility. Higher value capacitors cannot be fabricated. (f) Define transducer and name two passive transducers. Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current. Examples of Passive transducers: Each		• Easy replacement instead of repairing as it is	
Disadvantages of Integrated circuits: 		economical.	
 IC resistors have a limited range. Generally inductors (L) cannot be formed using IC. ICs are delicate and cannot withstand rough handling Limited amount of power handling. Lack of flexibility. Higher value capacitors cannot be fabricated. (f) Define transducer and name two passive transducers. Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current. Examples of Passive transducers: Each 		• Higher yield, because of the batch fabrication.	
 IC resistors have a limited range. Generally inductors (L) cannot be formed using IC. ICs are delicate and cannot withstand rough handling Limited amount of power handling. Lack of flexibility. Higher value capacitors cannot be fabricated. (f) Define transducer and name two passive transducers. Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current. Examples of Passive transducers: Each 		Disadvantages of Integrated circuits:	
 Generally inductors (L) cannot be formed using IC. ICs are delicate and cannot withstand rough handling Limited amount of power handling. Lack of flexibility. Higher value capacitors cannot be fabricated. (f) Define transducer and name two passive transducers. Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current. Examples of Passive transducers: Each 			
• ICs are delicate and cannot withstand rough handling • Limited amount of power handling. • Lack of flexibility. • Higher value capacitors cannot be fabricated.2M(f)Define transducer and name two passive transducers. Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current.2MExamples of Passive transducers:Each			
• Limited amount of power handling. • Lack of flexibility. • Higher value capacitors cannot be fabricated.2M(f) AnsDefine transducer and name two passive transducers. Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current.Definition IMExamples of Passive transducers:Each		· · · · · · · · · · · · · · · · · · ·	
• Lack of flexibility. • Higher value capacitors cannot be fabricated.2M(f) AnsDefine transducer and name two passive transducers. Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current.Definition IMExamples of Passive transducers:Each			
(f) AnsDefine transducer and name two passive transducers. Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current.2MExamples of Passive transducers:Each			
(f) AnsDefine transducer and name two passive transducers. Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current.2MExamples of Passive transducers:Each		• Higher value capacitors cannot be fabricated.	
into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current.Definition n IMExamples of Passive transducers:Each	(f)		2M
A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current.nExamples of Passive transducers:Each	Ans	Transducer is a device that converts one form of energy	
such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current.IMExamples of Passive transducers:Each			Definitio
equivalent electrical quantity either voltage or current.Examples of Passive transducers:Each			-
Examples of Passive transducers: <i>Each</i>			<i>1M</i>
-		equivalent electrical quantity either voltage or current.	
·		Examples of Passive transducers:	Each
• RTD Example			Example
• Inductive transducers $\frac{1}{2M}$			-

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION **MODEL ANSWER**

Subject: BASIC ELECTRONICS

22225 Subject Code: • Capacitive transducers • LVDT • LDR Strain gauge Thermisters **(g)** State seebeck and Peltier effect. **2M** Ans Seebeck effect: This states that whenever two dissimilar metals are connected together to form two junctions out of Each which, one junction is subjected to high temperature and Definitio another is subjected to low temperature then e.m.f is n induced and it is proportional to the temperature difference *1M* between two junctions. Peltier effect: This states that for two dissimilar metals in a closed loop, if current is forced to flow through, then one junction will be heated and other will become cool. OR It is the presence of heating of one junction and cooling of the other when electric current is maintained in a circuit of material consisting of two dissimilar conductors. Attempt any THREE: 2. 12 Determine the value of capacitance with the following **4M** (a) colour code. (i) Orange, Orange, Blue (ii) Yellow, Violet, Yellow Ans. (i) Orange, Orange, Blue **Colour coding:** Orange Orange Blue Colour coding 1M Value of capacitor: 33 X 10⁶ pF $= 33 \times 10^{6} \times 10^{-12} F$ $= 33 \times 10^{-6} F$

Page 4 / 29

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

 $= 33 \mu F$

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER - 2018 EXAMINATION **MODEL ANSWER**

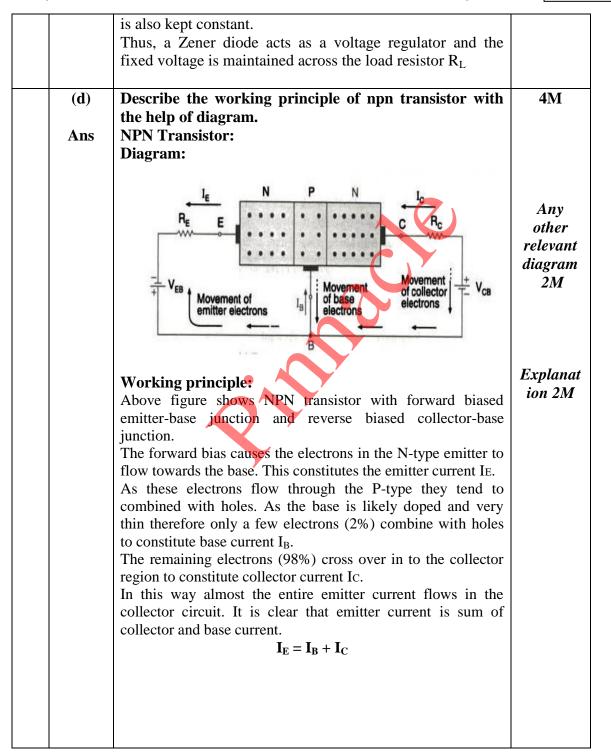
22225 Subject Code: Subject: BASIC ELECTRONICS ii) Yellow, Violet, Yellow Yellow Violet Yellow **Correct** answer with unit *1M* 7 4 Value of capacitor : 47 X 10⁴ pF = 470 KpFOR $= 47 \text{ X} 10^4 \text{ X} 10^{-12} \text{F}$ $= 47 \text{ X} 10^{-8} \text{ F}$ $= 0.47 \mu F$ Draw the neat sketch of center tap full wave rectifier. **4M (b)** Draw i/p and o/p waveforms. **Circuit Diagram** Ans Any other relevant circuit Suppi Diagram 2M Wavefor ¹D₂ ms **Input and Output Waveforms** 2M

Page 5 / 29

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BAS	SIC ELECTRONICS	Subject Code:	22225
(c) Ans	Draw and explain zener diode as a voltage reg Zener diode as voltage regulator A reverse biased Zener diode is used to provide voltage across the load resister R_L . The voltage circuit diagram showing the Zener diode is as giv V_{i} V_{i} V_{i} V_{i} V_{i} V_{i} V_{i} Unregulated V_{i} V_{i} V_{i} V_{i} V_{i} For proper operation, the input voltage Vi must than the Zener voltage Vz. This ensures that diode operates in the reverse breakdown cond unregulated input voltage Vi is applied to the Zener Regulation with varying input voltage Regulation As the input voltage increases, the input c increases. This increases the current through Ze without affecting the load current (I _L). The increase current will also increase the voltage drop acro keeps V _L as constant. If the input voltage is deci input current also decreases. As a result, the through zener will also decrease. Hence vol- across series resistance will be reduced. Thus remains constant.	ulator. a constant a constant e regulator ven below. Dia Regulated Dia voltage Dia be greater the Zener the Zener thirthe the I can redicted. Explain ge: (Line urrent [Is]) ner Diode, ase in input oss Rs and ceased, the he current thage drop	IM IM Im Im Im Im Im Im Im Im Im Im Im Im Im
	Regulation with varying load resistance: (Load Regulation) The variation in the load resistance R_L changes changing V_L . When load resistance decreases current increases. This causes zener current to de a result, the input current and voltage drop remains constant. Thus, the load voltage V_L is constant. On the other hand, When load increases, the load current decreases. This cause the input current to increase. This again keeps the input current to detage drop across R_S constant. Thus, the load	I_L , thereby b, the load ecrease. As across R_S also kept resistance uses zener current and	



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

Subject Code:

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

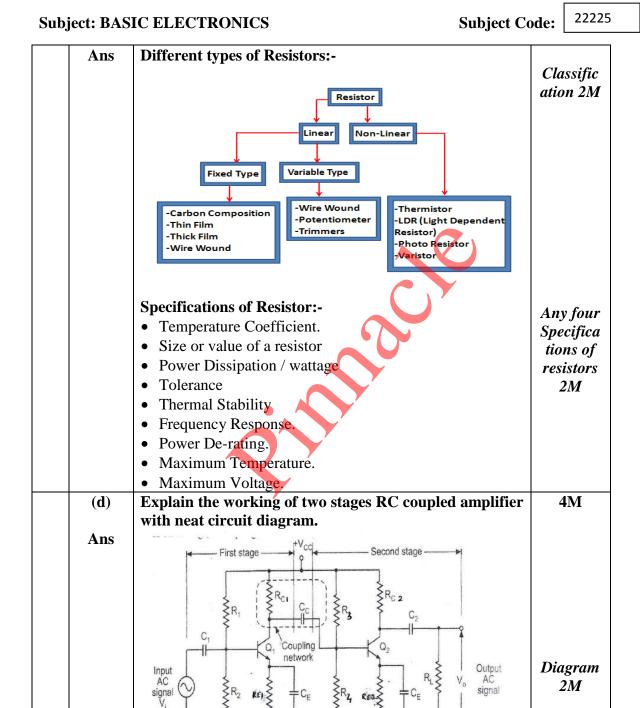
(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION **MODEL ANSWER**

Subject: BASIC ELECTRONICS

Subject Code:

(b)	 When the gate to source voltage (applied by V_{GG}) is increased above zero, the reverse bias voltage across gate source junction is increased. The depletion region is widened. This reduces the width of the channel and thus controls the flow of current. The gate source voltage reaches a point where the channel gets completely blocked and the drain current becomes zero is called pinch- off voltage (b) Differentiate active and passive transducer on the basis 			
	of any four poin	nts.		
Ans	Parameters	Active Transducer	Passive Transducer	Any four Comparis
	Working Principle	Operate under energy conversion	Operate under energy controlling principle	on 1M each
	Example	principle Thermocouple, Piezoelectric Transducer etc.	Thermistors, Strain Gauges etc.	
	Advantage	Do not require external power supply for its operation	Require external power supply for its operation	
	Application	Used for measurement of Surface roughness in accelerometers and vibration pick ups	Used for measurement of power at high frequency	
(c)	State the diffe specifications of	rent types of resi	stors. State any fou	r 4M



SURPORT TROUTED

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Page 10 / 29

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Sub	ject: BAS	IC ELECTRONICS Subject Co	ode:	22225
		 Two stages are connected with R & C components so it is called as RC Coupled amplifier. a) Resistor R_{C1}, R₃ & Capacitor C_C form the coupling network. b) R₁, R₂, R₃, R₄ provide voltage divider bias to Q₁ & Q₂. c) R_{C1}& R_{C2} provide V_{CE} to Q₁ & Q₂. d) R_{E1} & R_{E2} provide bias stabilization. Applications of RC Coupled Amplifier: Excellent frequency response from 50 Hz to 20 KHz so it is very useful in the initial stage of all public address systems.	и арр	rking vith olicati s 2M
4	(a)	Attempt any THREE: Explain any four selection criteria of transducers for		12 4M
	Ans	 temperature measurement. Note: Any other relevant selection criteria shall be considered. 1. Ambient temperature range: It will impact on sensor accuracy as we can easily predict the ambient temperature effect on measurement taken from the sensor. 2. Stability & control precision requirement: If accuracy requirement is far better than 20F, use an RTD and if long term stability is required an RTD is better choice than Thermocouple. 3. Speed of response to temperature change requirement. Spring loaded temperature sensor and stepped thermo wells provide good speed of response. 4. Cost: Measurement failure most often results in production down time costs. 	Co sele cri trai	y four prrect ection iteria of nsduc ers each
	(b)	Differentiate between P-N junction diode and zener diode.	2	4M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

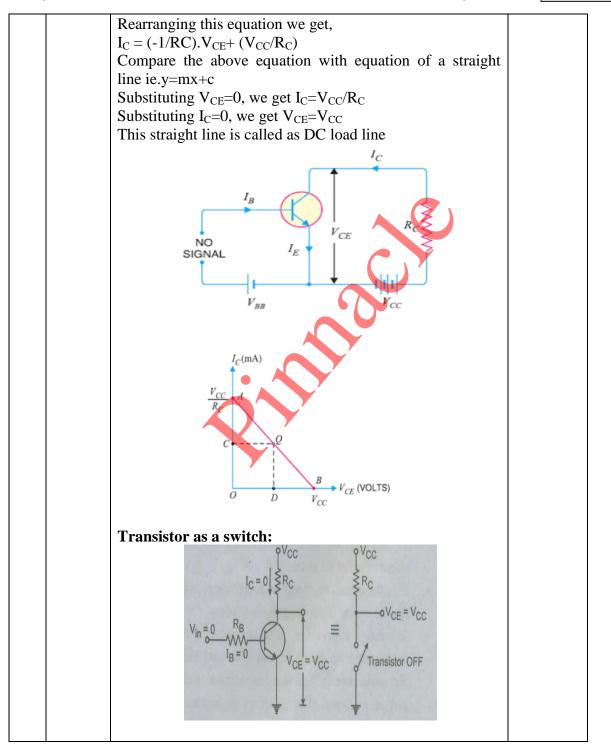
Subject: BASIC ELECTRONICS

Subject Code:

22225

Ans	Sr.No.	PN Junction Diode	Zener Diode	
	1	It is not properly doped to control reverse breakdown.	It is properly doped to control reverse breakdown.	Any four Correct
	2	It conducts only in one direction.	It conducts in both directions.	Comparis on
	3	It is always operated in forward-bias condition.	It is always operated in reverse-bias condition.	1M each
	4	It has no sharp reverse breakdown.	It has quite sharp reverse breakdown.	
	5	It burns immediately, if applied voltage exceeds the breakdown voltage.	It will not burn, but functions properly in breakdown region.	
	6	It is commonly used for rectification purpose.	It cannot be used for rectification, but commonly used for voltage regulation.	
(c)			tor. Explain working of	4 M
Ans	1. Q-p	tor as a switch. oint is the operating po at which it is biased.	int of the transistor $(I_{CQ},$	
	2. The amplify	concept of Q-point is use	d when transistor act as an operated in active region of	DC loadline 2M
	-	perate the BJT at a point s and currents through ext	it is necessary to provide	
	4.To dr saturati The sau through voltage 5. The	raw DC load line of a tran on current and cutoff volt turation current is the n in the transistor and occu across the collector is min cutoff voltage is the m	nsistor we need to find the age. naximum possible current rs at the point where the nimum. naximum possible voltage	Transisto r as a switch 2M
		he collector and occurs at non emitter amplifier is sl		
		ng KVL to the collector ci _{CE} - $I_C.R_C=0$	rcuit,	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)


(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

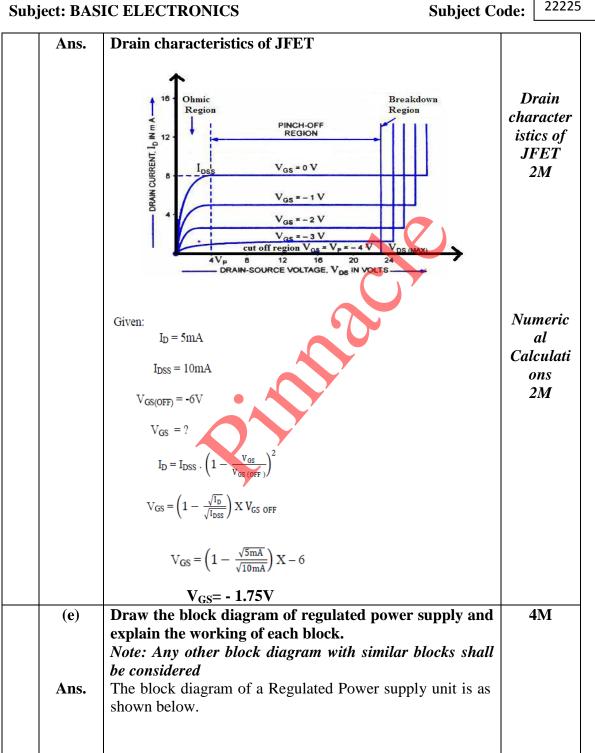
Subject Code: 2

22225

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS Subject Co			22225
	1. Transistor in cut- off region is an open switch. Here V_{in} is 0 V. 2. In the cut –off region both the junction of a transistor are reverse biased and very small reverse current flows through the transistors. 3. The voltage drop across the transistor (V_{CE}) is high. Thus, in the cut off region the transistor is equivalent to an open switch as shown in figure.		
	In saturation the transistor is equivalent to a closed switch. When V_{in} is positive a large base current flows and transistor saturates.		
	In the saturation region both the junctions of a transistor are forward biased. The voltage drop across the transistor (VCE) is very small, of the order of 0.2 V to 1V depending on the type of transistor and collector current is very large.		
(d)	Draw the Drain characteristics of JFET showing different operating regions. If drain current is 5mA, $I_{DSS} = 10mA$ & Vas _(off) = -6V. Find the value of V _{as} . <i>Note:</i> V_{as} <i>is considered as</i> V_{GS}	4]	М


22225

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION **MODEL ANSWER**

Subject: BASIC ELECTRONICS

22225

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION **MODEL ANSWER**

Subject: BASIC ELECTRONICS

Subject Code: 230v AC C Transformer Rectifier Smoothing Regulator Load Supply Diagram 2Mectified output Filtered output Pure dc output Transformer Input Waveform output A typical Regulated Power supply unit consists of the following. **Transformer** – An input transformer for the stepping down of the 230v AC power supply. Working of each **Rectifier** – A Rectifier circuit to convert the AC block components present in the signal to DC components. 2M**Smoothing** – A filtering circuit to smoothen the variations present in the rectified output. **Regulator** – A voltage regulator circuit in order to control the voltage to a desired output level. Load – The load which uses the pure dc output from the regulated output. Attempt any TWO 12 5 Solve the following: **(a)** (i) In the waveform shown in fig (1), state its amplitude, **6M** frequency, phase and wavelength. 2 msec Fig. 1

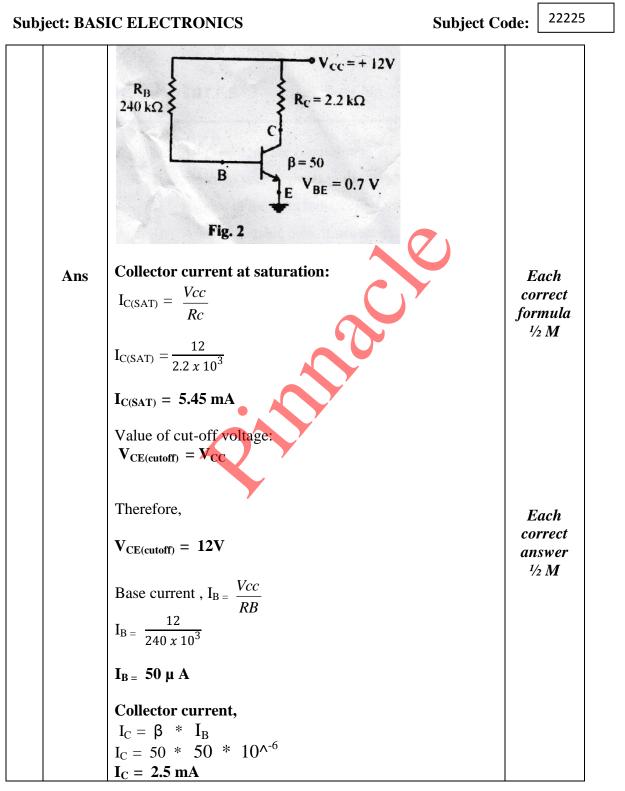
Page 16 / 29

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

Subject Code:


t Code: 22225

Ans	From given figure, 1. Amplitude = Vm = 4V 2. Frequency (f) = $\frac{1}{T}$	Each formula ½M
	$\frac{1}{2 x 10^{-3}}$ =500Hz 3. Phase: =0	Each final answer ½M
	 4. Wavelength λ = Vc/f =(3*10 ^8)/500 = 6 x 10⁵m (ii) Define: amplitude and frequency Amplitude: The maximum value (positive or negative) attained by an alternating quantity is called its amplitude or peak value. The amplitude of an alternating voltage or current is 	Each definition 1M
	Frequency: The number of cycles that occurs in one second is called the frequency (f) of the alternating quantity. It is measured in cycles/ sec or Hertz(Hz)	
(b)	(i) In the circuit shown in fig (2), a silicon transistor with $\beta = 50$ is used. Take $V_{BE} = 0.7V$. Find Q point value.	6M

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Page 18 / 29

22225

Subject Code:

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

	Collector to emitter voltage, $V_{CE} = V_{CC} \cdot (I_{C} * R_{C})$ $V_{CE} = 12 \cdot (2.5 * 10^{-3} * 2.2 * 10^{3})$ $V_{CE} = 6.5 V$ Q-points are $I_{CEQ} = 2.5 \text{ mA}$ $V_{CEQ} = 6.5 V$ Q-point is located on the D.C. load line as shown in figure.	
	Q-point is located on the D.C. load line as shown in righte. 5.45mh $2.5mh$ $6.5V$ $12V Vce(V)$	
	(ii) Define operating point of the transistor. Operating point: For proper operation of a transistor, in any application, we set a fix level of certain currents and voltages in a transistor. These values of currents and voltages define the point, at which transistor operates. This point is called operating points or quiscent points or Q points.	Q point definition 1 M
(c) Ans	In full wave bridge rectifier $V_m = 10V$, $RL = 10K\Omega$. find out V_{DC} , I_{DC} , ripple factor and PIV. In full wave bridge rectifier: 1. $V_{DC} = 2V_m/\pi = 0.637 \text{ * } V_m$ Therefore, $V_{DC} = 0.637 \text{ * } 10$	6M Each formula 1M
	$V_{DC} = 6.37 V$	1.174

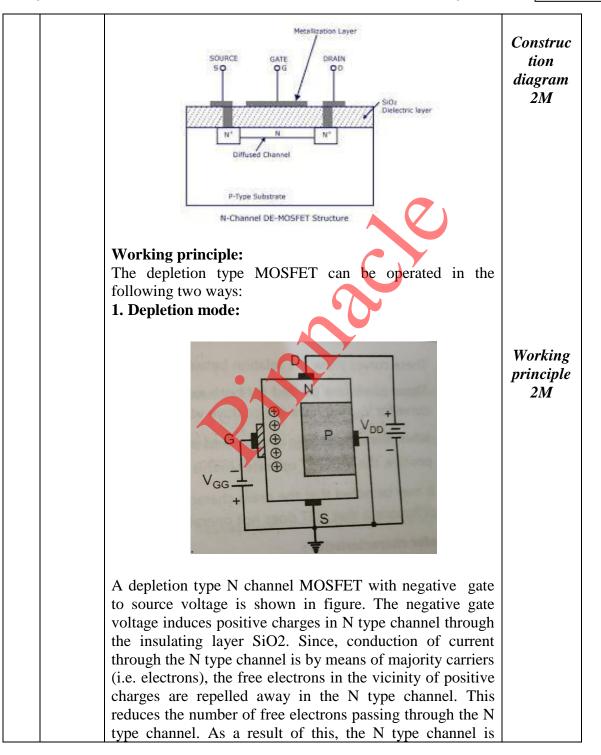
(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION **MODEL ANSWER**

Subject: BASIC ELECTRONICS

Subj	ject: BAS	IC ELECTRONICS Su	ibject Cod	e: 222	225
		2. $I_{DC} = 2I_m/\pi = \frac{2Vm}{\pi * RL}$ Therefore, $I_{DC} = \frac{2 \times 10}{\pi \times 10 \times 10^3}$ $I_{DC} = 0.636 \text{ mA}$ 3. Ripple factor $\sqrt{\frac{I_{rms-1}}{I_{DC}}} = \sqrt{\frac{I_{m/\sqrt{2}^ 1}}{I_{DC}}}$ $\sqrt{\frac{V_m / RL \times \sqrt{2} - 1}{I_{DC}}}$ 7.07 x 10 ⁻⁴ Therefore, Ripple factor = 0.331 4. PIV = Vm Therefore, PIV= 10 V		Each final answer ½ M	
6	(a) Ans	Attempt any TWO: Explain working principle of N-channel depletion MOSFET with construction diagram. Co depletion type MOSFET & enhancement MOSFET.	ompare	12 6M	

22225

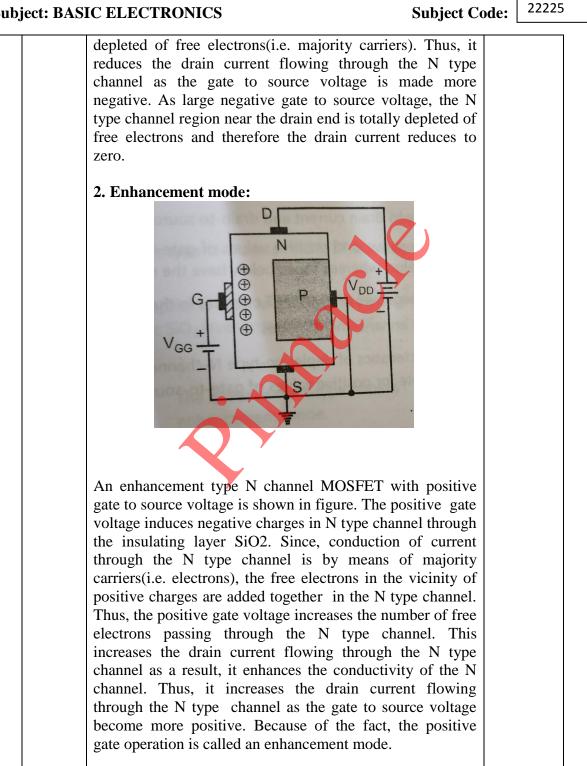

Subject Code:

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

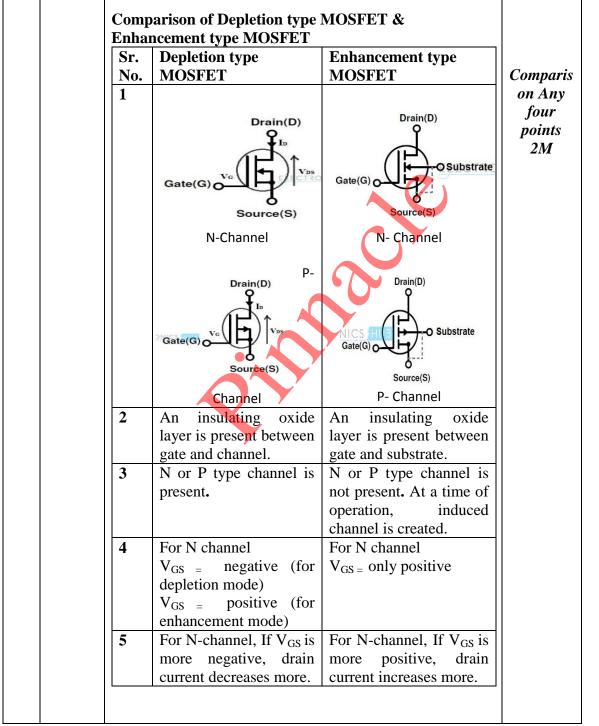


MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION **MODEL ANSWER**

Subject: BASIC ELECTRONICS



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

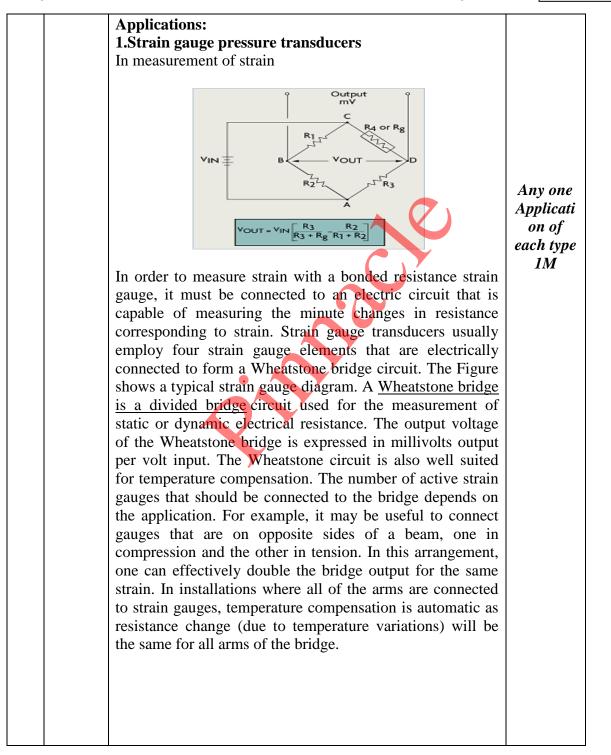
Subject: BASIC ELECTRONICS

Subject Code:

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

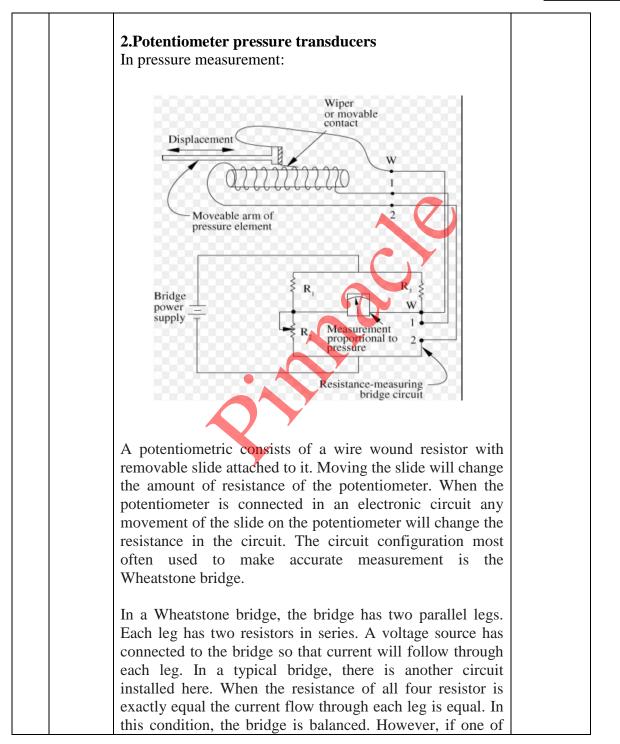
(b)	Differentiate CE, CB, CC, w.r.t. to (i) Input resistance (ii) Output resistance (iii) Current gain (iv) Voltage gain (v) Phase shift between input and output (vi) Applications					6M
Ans	Sr. No	Parameter	СВ	CE	CC	Each point 1M
	1	Input resistance	Very low (20Ω)	Low(1K Ω)	High (500K Ω)	
	2	Output resistance	Very high (1M Ω)	High(40K Ω)	$\begin{array}{c} \text{Low}(50\\ \Omega) \end{array}$	
	3	Current gain	Less than unity	High (20 to few hundred)	High (20 to few hundred)	
	4	Voltage gain	Medium	Medium	Less than unity	
	5	Phase shift between input and output	0	180°	0	
	6	Application s	As pre- amplifier	As Audio amplifier	For impedance matching	
(c)	descr Note:	four types of ibe one applic : ¹ /2M may be electrical pres	cation of eac granted for	h one. <i>stating the d</i>	application of	6M
Ans	Type 1.Stra 2.Pot 3.Piez 4. Re	s of electrical ain gauge press entiometer pre zoelectric press luctance pressu pacitive pressu	pressure tra sure transduc ssure transdu sure transduc ure transduce	ers cers rers rs		Any four Types 2M



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

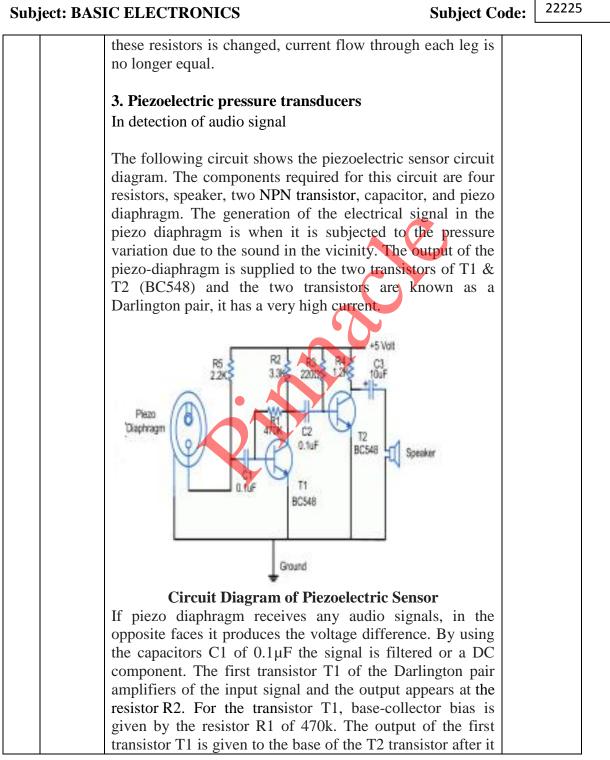
Subject: BASIC ELECTRONICS


(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

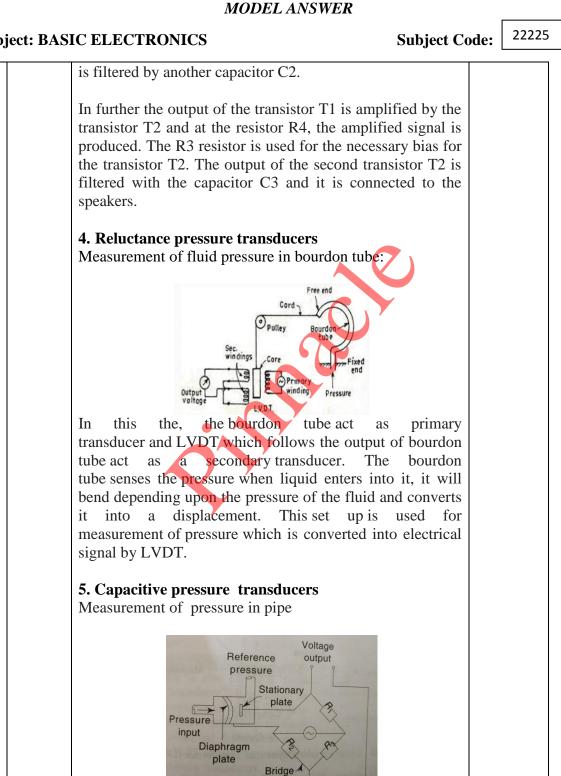
22225



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION **MODEL ANSWER**

Subject: BASIC ELECTRONICS



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER - 2018 EXAMINATION **MODEL ANSWER**

Subject: BASIC ELECTRONICS

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

Subject Code:

22225

In this arrangement, in place of movable plate, diaphragm is used, which expands and contracts due to change in pressure. The diaphragm plate acts as a movable plate of a capacitor. A fixed plate is placed near the diaphragm. These plates form a parallel plate capacitor which is connected as one of the arms of a bridge. Any change in pressure causes a change in distance between the diaphragm and fixed plate, which is unbalances the bridge. The voltage output of the bridge corresponds to the pressure applied to the diaphragm plate.	

Page **29 / 29**