MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS

Subject Code:
22225

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by juđgementon part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answer	Marking Scheme
1.	(a) Ans.	Attempt any FIVE of the following: Draw the symbol of inductor and capacitor. State the unit of inductor and capacitor. Symbol of Inductor: omo OR_ranto Symbol of Capacitor: $\frac{1}{T} \text { OR } \frac{1}{T} \text { OR } \frac{1}{7} \text { OR } \frac{1}{7}$ Unit of Inductance : Henry OR H Unit of capacitance : farad OR F	10 Each symbol $1 / 2$ M Each Unit $1 / 2 \boldsymbol{M}$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS
Subject Code:
22225

(b) Ans	State the need of filters. Define filter. Need: In dc power supplies, the output of a rectifier contains dc component as well as ac component. The presence of the ac component is undesirable and must be removed so that pure dc can be obtained. Thus filters circuits are required. Filters: Filters are electronic circuits (consisting of inductors and capacitors) which remove or minimize unwanted ac component of the rectifier output and allows only the dc component to reach the load.	$\begin{gathered} 2 \mathrm{M} \\ \text { Need } 1 M \\ \text { Definitio } \\ n \\ 1 M \end{gathered}$
$\begin{gathered} \hline \text { (c) } \\ \text { Ans } \end{gathered}$	Define α and $\boldsymbol{\beta}$ of transistor. $\boldsymbol{\alpha}$ (Alpha): This is the Common Base dc current gain. It defined as the ratio of collector current (Ic) to emitter current (IE). $\alpha=\frac{I_{C}}{I_{E}}$ $\boldsymbol{\beta}$ (Beta): This is the Common Emitter dc current gain. It is defined as the ratio of collector current (Ic) to the base current (Iв). $\boldsymbol{\beta}=\frac{I_{C}}{I_{B}}$	2M Each definition 1M
(d) Ans	Define amplification factor and trans-conductance of JFET. Amplification factor: Amplification factor (μ) of a JFET is the ratio of change in drain voltage to gate voltage keeping constant drain current. This indicates how much more control the gate voltage has over drain current compared to the drain voltage. $\mu=\frac{\Delta \mathrm{V}_{D S}}{\Delta \mathrm{~V}_{G S}} \text { keeping } \mathrm{I}_{\mathrm{D}} \text { constant. }$	2 M Each definition $1 M$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS
Subject Code:
22225

	Transconductance: The transconductance g_{m} is the change in the drain current for a given change in gate to source voltage with constant drain to source voltage. $\mathrm{g}_{\mathrm{m}}=\frac{\Delta \mathrm{I} D}{\Delta \mathrm{~V} G S} \text { keeping } \mathrm{V}_{\mathrm{DS}} \text { constant. }$	
(e) Ans	State the two advantages and disadvantages of integrated circuits. Advantages of Integrated circuits: - Small in size due to the reduced device dimension. - Low weight due to very small size. - Low power requirement due to lower dimension and lower threshold power requirement. - Low cost due to large-scale production. - High reliability due to the absence of a solder joint. - Increased speed. - Easy replacement instead of repairing as it is economical. - Higher yield, because of the batch fabrication. Disadvantages of Integrated circuits: - IC resistors have a limited range. - Generally inductors (L) cannot be formed using IC. - ICs are delicate and cannot withstand rough handling - Limited amount of power handling. - Lack of flexibility. - Higher value capacitors cannot be fabricated.	2M Each advantag e and disadvant age $-1 / 2 \boldsymbol{M}$
$\begin{gathered} (\mathbf{f}) \\ \text { Ans } \end{gathered}$	Define transducer and name two passive transducers. Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current. Examples of Passive transducers: - RTD - Inductive transducers	2 MDefinitio$n$$1 M$EachExample $1 / 2 M$

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS

Subject Code:
22225

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
- Capacitive transducers \\
- LVDT \\
- LDR \\
- Strain gauge \\
- Thermisters
\end{tabular} \& \\
\hline \& \[
\begin{gathered}
(\mathbf{g}) \\
\text { Ans }
\end{gathered}
\] \& \begin{tabular}{l}
State seebeck and Peltier effect. \\
Seebeck effect: This states that whenever two dissimilar metals are connected together to form two junctions out of which, one junction is subjected to high temperature and another is subjected to low temperature then e.m.f is induced and it is proportional to the temperature difference between two junctions. \\
Peltier effect: This states that for two dissimilar metals in a closed loop, if current is forced to floy through, then one junction will be heated and other will become cool. \\
It is the presence of heating of one junction and cooling of the other when electric current is maintained in a circuit of material consisting of two dissimilar conductors.
\end{tabular} \& 2 M
Each
Definitio
\(n\)
\(1 M\) \\
\hline 2. \& (a)

Ans. \& \begin{tabular}{l}
Attempt any THREE:

Determine the value of capacitance with the following colour code.

(i) Orange, Orange, Blue

(ii) Yellow, Violet, Yellow

(i) Orange, Orange, Blue Colour coding:
$$
\begin{array}{|l|l}
\text { Orange } & \text { Orange }
\end{array} \text { Blue }
$$

 \&

12 4M

Colour coding 1M
\end{tabular}

\hline
\end{tabular}

WINTER - 2018 EXAMINATION
MODEL ANSWER
Subject: BASIC ELECTRONICS
Subject Code:
22225

	ii) Yellow, Violet, Yellow Yellow Violet Yellow $\begin{aligned} \text { Value of capacitor : } & 47 \times 10^{4} \mathrm{pF} \\ & =470 \mathrm{KpF} \\ & \mathbf{O R} \\ & =47 \times 10^{4} \times 10^{-12} \mathrm{~F} \\ & =47 \times 10^{-8} \mathrm{~F} \\ & =\mathbf{0 . 4 7 \mu \mathbf { F }} \end{aligned}$	Correct answer with unit 1M
(b) Ans	Draw the neat sketch of center tap full wave rectifier. Draw i/p and o/p waveforms. Circuit Diagram	4M Any other relevant circuit Diagram 2M Wavefor $m s$ 2M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
(ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS
Subject Code:
22225

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS
Subject Code:
22225

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS
Subject Code:
22225

3	(a) Ans	Attempt any THREE: Sketch the construction of \mathbf{n}-channel JFET and explain its working principle. Construction of N-channel JFET Working of N channel FET When a voltage is applied between the drain and source with a DC supply $\left(\mathrm{V}_{\mathrm{DD}}\right)$, the electrons flows from source to drain through narrow channel existing between the depletion regions. This constitutes drain current , I_{D}. The value of drain current is maximum when the external voltage applied between gate and source 0 V .	12 $4 M$ Construc tion 2M Working Principle 2M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS
Subject Code:
22225

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS
Subject Code:
22225

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
(ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS
Subject Code:
22225

		Two stages are connected with R \& C components so it is called as RC Coupled amplifier. a) Resistor $\mathrm{R}_{\mathrm{C} 1}, \mathrm{R}_{3} \&$ Capacitor C_{C} form the coupling network. b) $R_{1}, R_{2}, R_{3}, R_{4}$ provide voltage divider bias to $Q_{1} \& Q_{2}$. c) $R_{C 1} \& R_{C 2}$ provide $V_{C E}$ to $Q_{1} \& Q_{2}$. d) $R_{E 1} \& R_{E 2}$ provide bias stabilization. Applications of RC Coupled Amplifier: Excellent frequency response from 50 Hz to 20 KHz so it is very useful in the initial stage of all public address systems.	Working with applicati ons 2M
4	(a) Ans	Attempt any THREE: Explain any four selection criteria of transducers for temperature measurement. Note: Any other relevant selection criteria shall be considered. 1. Ambient temperature range: It will impact on sensor accuracy as we can easily predict the ambient temperature effect on measurement taken from the sensor. 2. Stability \& control precision requirement: If accuracy requirement is far better than 20F, use an RTD and if long term stability is required an RTD is better choice than Thermocouple. 3. Speed of response to temperature change requirement. Spring loaded temperature sensor and stepped thermo wells provide good speed of response. 4. Cost: Measurement failure most often results in production down time costs.	12 4 M Any four Correct selection criteria of transduc ers 1M each
	(b)	Differentiate between P-N junction diode and zener diode.	4M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS
Subject Code:
22225

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS
Subject Code:
22225

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS
Subject Code:
22225

| | 1. Transistor in cut- off region is an open switch. Here $\mathrm{V}_{\text {in }}$
 is 0 V.
 2. In the cut -off region both the junction of a transistor are
 reverse biased and very small reverse current flows through
 the transistors.
 3. The voltage drop across the transistor ($\mathrm{V}_{\text {CE }}$) is high.
 Thus, in the cut off region the transistor is equivalent to an
 open switch as shown in figure. |
| :--- | :--- | :--- |
| In saturation the transistor is equivalent to a closed switch.
 When $\mathrm{V}_{\text {in }}$ is positive a large base current flows and
 transistor saturates.
 In the saturation region both the junctions of a transistor are
 forward biased.
 The voltage drop across the transistor (VCE) is very small,
 of the order of 0.2 V to 1 V depending on the type of
 transistor and collector current is very large. | |

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject Code:

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

		A typical Regulated Power supply unit consists of the following. Transformer - An input transformer for the stepping down of the 230v AC power supply. Rectifier - A Rectifier circuit to convert the AC components present in the signal to DC components. Smoothing - A filtering circuit to smoothen the variations present in the rectified output. Regulator - A voltage regulator circuit in order to control the voltage to a desired output level. Load - The load which uses the pure dc output from the regulated output.	Diagram 2M Working of each block 2M
5	(a)	Attempt any TWO Solve the following: (i) In the waveform shown in fig (1), state its amplitude, frequency, phase and wavelength. Fig. 1	$\begin{gathered} 12 \\ 6 M \end{gathered}$

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS
Subject Code:
22225

Ans	From given figure, 1. Amplitude $=\mathrm{Vm}=4 \mathrm{~V}$ 2. Frequency $(\mathbf{f})=\frac{1}{T}$ $\begin{aligned} & \frac{1}{2 x 10^{-3}} \\ & =500 \mathrm{~Hz} \end{aligned}$ 3. Phase: $=0$ 4. Wavelength $\lambda=\mathrm{Vc} / \mathrm{f}=\left(3^{*} 10 \wedge 8\right) / 500=6 \times 10^{5} \mathrm{~m}$ (ii) Define: amplitude and frequency Amplitude: The maximum value (positive or negative) attained by an alternating quantity is called its amplitude or peak value. The amplitude of an alternating voltage or current is designated by V_{m} or I_{m}. Frequency: The number of cycles that occurs in one second is called the frequency (f) of the alternating quantity. It is measured in cycles/ sec or Hertz(Hz)	Each formula $1 / 2 M$ Each final answer $1 / 2 M$ Each definition 1M
(b)	(i) In the circuit shown in fig (2), a silicon transistor with $\beta=50$ is used. Take $V_{B E}=0.7 \mathrm{~V}$. Find Q point value.	6M

WINTER - 2018 EXAMINATION
MODEL ANSWER
Subject: BASIC ELECTRONICS
Subject Code:
22225

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS
Subject Code:
22225

WINTER - 2018 EXAMINATION

MODEL ANSWER

Subject: BASIC ELECTRONICS \quad Subject Code: 22225

		2. $\mathrm{I}_{\mathrm{DC}}=2 \mathrm{I}_{\mathrm{m}} / \pi=\frac{2 \mathrm{Vm}}{\pi * R L}$ Therefore, $\begin{aligned} & \mathrm{I}_{\mathrm{DC}}=\frac{2 \times 10}{\pi \times 10 \times 10^{3}} \\ & \mathrm{I}_{\mathrm{DC}}=0.636 \mathrm{~mA} \end{aligned}$ 3. Ripple factor $\begin{aligned} & \sqrt{\frac{\mathbf{I}_{\mathbf{I m s}-1}}{\mathbf{I}_{\mathrm{DC}}}}=\sqrt{\frac{\mathbf{I}_{\mathrm{m} / \sqrt{2}}-1}{\mathbf{I}_{\mathrm{DC}}}} \\ & \sqrt{\frac{\mathbf{V}_{\mathrm{m}} / \mathrm{RLx} \sqrt{2}-1}{\mathbf{I}_{\mathrm{DC}}}} \\ & 7.07 \times 10^{-4} \end{aligned}$ Therefore, Ripple factor $=\mathbf{0 . 3 3 1}$ 4. $\mathbf{P I V}=\mathbf{V m}$ Therefore, $\text { PIV }=10 \mathrm{~V}$	Each final answer $1 / 2 \boldsymbol{M}$
6	(a) Ans	Attempt any TWO: Explain working principle of \mathbf{N}-channel depletion type MOSFET with construction diagram. Compare depletion type MOSFET \& enhancement type MOSFET.	$\begin{gathered} 12 \\ 6 M \end{gathered}$

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject Code:
22225

ENGINEERING

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS
Subject Code:
22225
depleted of free electrons(i.e. majority carriers). Thus, it reduces the drain current flowing through the N type channel as the gate to source voltage is made more negative. As large negative gate to source voltage, the N type channel region near the drain end is totally depleted of free electrons and therefore the drain current reduces to zero.
2. Enhancement mode:

An enhancement type N channel MOSFET with positive gate to source voltage is shown in figure. The positive gate voltage induces negative charges in N type channel through the insulating layer SiO 2 . Since, conduction of current through the N type channel is by means of majority carriers(i.e. electrons), the free electrons in the vicinity of positive charges are added together in the N type channel. Thus, the positive gate voltage increases the number of free electrons passing through the N type channel. This increases the drain current flowing through the N type channel as a result, it enhances the conductivity of the N channel. Thus, it increases the drain current flowing through the N type channel as the gate to source voltage become more positive. Because of the fact, the positive gate operation is called an enhancement mode.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS
Subject Code:
22225

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS
Subject Code:
22225

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS
Subject Code:
22225

Applications:
 1.Strain gauge pressure transducers
 In measurement of strain

In order to measure strain with a bonded resistance strain gauge, it must be connected to an electric circuit that is capable of measuring the minute changes in resistance corresponding to strain. Strain gauge transducers usually employ four strain gauge elements that are electrically connected to form a Wheatstone bridge circuit. The Figure shows a typical strain gauge diagram. A Wheatstone bridge is a divided bridge circuit used for the measurement of static or dynamic electrical resistance. The output voltage of the Wheatstone bridge is expressed in millivolts output per volt input. The Wheatstone circuit is also well suited for temperature compensation. The number of active strain gauges that should be connected to the bridge depends on the application. For example, it may be useful to connect gauges that are on opposite sides of a beam, one in compression and the other in tension. In this arrangement, one can effectively double the bridge output for the same strain. In installations where all of the arms are connected to strain gauges, temperature compensation is automatic as resistance change (due to temperature variations) will be the same for all arms of the bridge.

Any one
Applicati on of each type 1M

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS
Subject Code:
22225

| 2.Potentiometer pressure transducers |
| :--- | :--- |
| In pressure measurement: |

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS
Subject Code:
22225
these resistors is changed, current flow through each leg is no longer equal.

3. Piezoelectric pressure transducers

In detection of audio signal
The following circuit shows the piezoelectric sensor circuit diagram. The components required for this circuit are four resistors, speaker, two NPN transistor, capacitor, and piezo diaphragm. The generation of the electrical signal in the piezo diaphragm is when it is subjected to the pressure variation due to the sound in the vicinity. The output of the piezo-diaphragm is supplied to the two transistors of T1 \& T2 (BC548) and the two transistors are known as a Darlington pair, it has a very high current.

Circuit Diagram of Piezoelectric Sensor
If piezo diaphragm receives any audio signals, in the opposite faces it produces the voltage difference. By using the capacitors C 1 of $0.1 \mu \mathrm{~F}$ the signal is filtered or a DC component. The first transistor T1 of the Darlington pair amplifiers of the input signal and the output appears at the resistor R2. For the transistor T1, base-collector bias is given by the resistor R1 of 470k. The output of the first transistor T 1 is given to the base of the T 2 transistor after it

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS
Subject Code:
22225
is filtered by another capacitor C 2 .
In further the output of the transistor T1 is amplified by the transistor T2 and at the resistor R4, the amplified signal is produced. The R3 resistor is used for the necessary bias for the transistor T2. The output of the second transistor T2 is filtered with the capacitor C3 and it is connected to the speakers.

4. Reluctance pressure transducers

Measurement of fluid pressure in bourdon tube:

In this the, the bourdon tube act as primary transducer and LVDT/which follows the output of bourdon tube act as a secondary transducer. The bourdon tube senses the pressure when liquid enters into it, it will bend depending upon the pressure of the fluid and converts it into a displacement. This set up is used for measurement of pressure which is converted into electrical signal by LVDT.

5. Capacitive pressure transducers

Measurement of pressure in pipe

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: BASIC ELECTRONICS
Subject Code:
22225

| | In this arrangement, in place of movable plate, diaphragm
 is used, which expands and contracts due to change in
 pressure. The diaphragm plate acts as a movable plate of a
 capacitor. A fixed plate is placed near the diaphragm.
 These plates form a parallel plate capacitor which is
 connected as one of the arms of a bridge. Any change in
 pressure causes a change in distance between the
 diaphragm and fixed plate, which is unbalances the bridge.
 The voltage output of the bridge corresponds to the
 pressure applied to the diaphragm plate. | |
| :--- | :--- | :--- | :--- |

